TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations

نویسندگان

  • A. M. Negredo
  • J. L. Valera
  • E. Carminati
چکیده

TEMSPOL is an open MATLAB code suitable for calculating temperature and lateral anomaly of density distributions in deep subduction zones, taking into account the olivine to spinel phase transformation in a selfconsistent manner. The code solves, by means of a finite difference scheme, the heat transfer equation including adiabatic heating, radioactive heat generation, latent heat associated with phase changes and frictional heating. We show, with a few simulations, that TEMSPOL can be a useful tool for researchers studying seismic velocity, stress and seismicity distribution in deep subduction zones. Deep earthquakes in subducting slabs are thought to be caused by shear instabilities associated with the olivine to spinel phase transition in metastable olivine wedges. We investigate the kinematic and thermal conditions of the subducting plate that lead to the formation of metastable olivine wedges. Moreover, TEMSPOL calculates lateral anomalies of density within subducting slabs, which can be used to evaluate buoyancy forces that determine the dynamics of subduction and the stress distribution within the slab. We use TEMSPOL to evaluate the effects of heat sources such as shear heating and latent heat release, which are neglected in commonly used thermal models of subduction. We show that neglecting these heat sources can lead to significant overestimation of the depth reached by the metastable olivine wedge. r 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal structure and dynamics of subduction zones: insights from observations and modeling

Subduction zones form dominant tectonic features on the Earth and are the site of large underthrusting earthquakes and explosive arc volcanism. They are also the only locations with deep earthquakes in the Earth’s interior. Major questions remain regarding the dynamics of subduction zones, including aspects such as the role of water in the formation of arc volcanism and deep earthquakes, the in...

متن کامل

Subduction zones: observations and geodynamic models

This review of subduction and geodynamic models is organized around three central questions: (1) Why is subduction asymmetric? (2) Are subducted slabs strong or weak? (3) How do subducted slabs interact with phase transformations, changes in mantle rheology, and possibly chemical boundaries in the mantle? Based on laboratory measurements of the temperature dependence of olivine, one would concl...

متن کامل

Geoid and topography over subduction zones: The effect of phase transformations

[1] The association between local maxima in the geoid and subduction zones is examined. While it is well known that subduction zones are associated with broad local maxima in the geoid at spherical harmonic degrees 4–9, there is an impressive correlation between back arc geoid maxima at the 5000 km length scale (i.e., spherical harmonic degrees >9) and subduction zones with the exception of the...

متن کامل

High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle

[1] Arc volcanism is intimately linked to mineral dehydration reactions in the subducting oceanic mantle, crust, and sediments. The location of slab dehydration reactions depends strongly on the temperature and pressure conditions at the top of the subducting plate and hence on the detailed thermal structure of subduction zones. A particularly important physical property of subduction zone ther...

متن کامل

Controls on trench topography from dynamic models of subducted slabs

A finite element method with constrained elements and Lagrange multipliers is used to study tectonic faults in a viscous medium. A fault, representing the interface between overriding and subducting plates, has been incorporated into a viscous flow model of a subduction zone in which both thermal buoyancy and the buoyancy associated with the phase change from olivine to spinel are included. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2004